Human FMO2-based microbial whole-cell catalysts for drug metabolite synthesis
نویسندگان
چکیده
BACKGROUND Getting access to authentic human drug metabolites is an important issue during the drug discovery and development process. Employing recombinant microorganisms as whole-cell biocatalysts constitutes an elegant alternative to organic synthesis to produce these compounds. The present work aimed for the generation of an efficient whole-cell catalyst based on the flavin monooxygenase isoform 2 (FMO2), which is part of the human phase I metabolism. RESULTS We show for the first time the functional expression of human FMO2 in E. coli. Truncations of the C-terminal membrane anchor region did not result in soluble FMO2 protein, but had a significant effect on levels of recombinant protein. The FMO2 biocatalysts were employed for substrate screening purposes, revealing trifluoperazine and propranolol as FMO2 substrates. Biomass cultivation on the 100 L scale afforded active catalyst for biotransformations on preparative scale. The whole-cell conversion of trifluoperazine resulted in perfectly selective oxidation to 48 mg (46% yield) of the corresponding N (1)-oxide with a purity >98%. CONCLUSIONS The generated FMO2 whole-cell catalysts are not only useful as screening tool for human metabolites of drug molecules but more importantly also for their chemo- and regioselective preparation on the multi-milligram scale.
منابع مشابه
Isoform specificity of N-deacetyl ketoconazole by human and rabbit flavin-containing monooxygenases.
N-Deacetyl ketoconazole (DAK) is the major metabolite of orally administered ketoconazole. This major metabolite has been demonstrated to be further metabolized predominately by the flavin-containing monooxygenases (FMOs) to the secondary hydroxylamine, N-deacetyl-N-hydroxyketoconazole (N-hydroxy-DAK) by adult and postnatal rat hepatic microsomes. Our current investigation evaluated the FMO iso...
متن کاملMetabolic engineering of microbes for oligosaccharide and polysaccharide synthesis
Metabolic engineering has recently been embraced as an effective tool for developing whole-cell biocatalysts for oligosaccharide and polysaccharide synthesis. Microbial catalysts now provide a practical means to derive many valuable oligosaccharides, previously inaccessible through other methods, in sufficient quantities to support research and clinical applications. The synthesis process based...
متن کاملCo-expression of active human cytochrome P450 1A2 and cytochrome P450 reductase on the cell surface of Escherichia coli
BACKGROUND Human cytochrome P450 (CYP) enzymes mediate the first step in the breakdown of most drugs and are strongly involved in drug-drug interactions, drug clearance and activation of prodrugs. Their biocatalytic behavior is a key parameter during drug development which requires preparative synthesis of CYP related drug metabolites. However, recombinant expression of CYP enzymes is a challen...
متن کاملMammalian flavin-containing monooxygenase (FMO) as a source of hydrogen peroxide.
Flavin-containing monooxygenase (FMO) oxygenates drugs/xenobiotics containing a soft nucleophile through a C4a hydroperoxy-FAD intermediate. Human FMOs 1, 2 and 3, expressed in Sf9 insect microsomes, released 30-50% of O₂ consumed as H₂O₂ upon addition of NADPH. Addition of substrate had little effect on H₂O₂ production. Two common FMO2 (the major isoform in the lung) genetic polymorphisms, S19...
متن کاملMetabolism and Pharmacokinetics of the Anti-Tuberculosis Drug Ethionamide in a Flavin-Containing Monooxygenase
Multiple drug resistance (MDR) in Mycobacterium tuberculosis (mTB), the causative agent for tuberculosis (TB), has led to increased use of second-line drugs, including ethionamide (ETA). ETA is a prodrug bioactivated by mycobacterial and mammalian flavin-containing monooxygenases (FMOs). FMO2 is the major isoform in the lungs of most mammals, including primates. In humans a polymorphism exists ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2015